Publications

  1. SPLICER: a highly efficient base editing toolbox that enables in vivo therapeutic exon skipping
    Miskalis, AJ, Shirguppe S LN, Winter J, Elias G, Swami D, Nambiar A, Stilger M, Woods WS, Gosstola N, Gapinske M, Zeballos C MA, Moore MJ, Maslov S, Gaj T, Perez-Pinera P.
    bioRxiv doi: 10.1101/2024.04.01.587650 (2024)
  2. The next-generation of genome editing: the future is now
    Perez-Pinera P and Gaj T
    Current Opinion in Biomedical Engineering 100522 (2024)
  3. A high-fidelity CRISPR-Cas13 system improves abnormalities associated with C9ORF72-linked ALS/FTD
    McCallister TX, Lim CKW, Terpstra WM, Zeballos C MA, Zhang S, Powell JE and Gaj T
    bioRxiv doi:10.1101/2023.12.12.571328 (2023)
  4. Mitigating a TDP-43 proteinopathy by targeting ataxin-2 using RNA-targeting CRISPR effector proteins
    Zeballos C MA, Moore HJ, Smith TJ, Powell JE, Ahsan NS, Zhang S and Gaj T
    Nature Communications 14, 6492 (2023)
  5. Delivering base editors in vivo by adeno-associated virus vectors
    Lim CKW, Miskalis AJ, Perez-Pinera P and Gaj T
    Methods in Molecular Biology 2606, 135-158 (2023)
  6. Genome editing and CRISPR technology
    Lim CKW and Gaj T
    Encyclopedia of Cell Biology, Second Edition 1, 650-656 (2023)
  7. CRISPR base editing of cis-regulatory elements enables the perturbation of neurodegeneration-linked genes
    Lim CKW, McCallister TX, Saporito-Magriña C, McPheron GD, Krishnan R, Zeballos C MA, Powell JE, Clark LV, Perez-Pinera P and Gaj T
    Molecular Therapy 30, 3619-31 (2022)

    • Commentary in Molecular Therapy [Link]
  8. Targeted gene silencing in the nervous system with CRISPR-Cas13
    Powell JE, Lim CKW, Krishnan R, McCallister TX, Saporito-Magriña C, Zeballos C MA, McPheron GD and Gaj T
    Science Advances 8, eabk2485 (2022)

    • Highlighted by ALS News Today [Link]
  9. Next-generation CRISPR technologies and their applications in gene and cell therapy
    Zeballos C MA and Gaj T
    Trends in Biotechnology 39, 692-705 (2021)
  10. Treatment of a mouse model of ALS by in vivo base editing
    Lim CKW*, Gapinske M*, Brooks AK*, Woods WS, Powell JE, Zeballos C MA, Winter J, Perez-Pinera P* and Gaj T* (*equal contribution)
    Molecular Therapy 28, 1177-89 (2020)

    • Highlighted by The Scientist [Link]
    • Highlighted by the CRISPR Journal [Link]
    • Highlighted by ALS News Today [Link]
  11. CRISPR-Cas9-mediated genome editing increases lifespan and improves motor deficits in a Huntington’s disease mouse model
    Ekman FK, Ojala DS, Adil MM, Lopez PA, Schaffer DV* and Gaj T* (*equal contribution)
    Molecular Therapy – Nucleic Acids 17, 829-839 (2019)
  12. The continuously evolving CRISPR barcoding toolbox
    Gaj T and Perez-Pinera P
    Genome Biology 19, doi: 10.1186/s13059-018-1541-y (2018)
  13. Manufacturing and delivering genome-editing proteins
    Liu J, Liang, YJ, Ren PL and Gaj T
    Methods in Molecular Biology 1867, 253-273 (2018)
  14. Innovations in CRISPR technology
    Brooks AK and Gaj T
    Current Opinion in Biotechnology 52, 95–101 (2018)
  15. hPSC-derived striatal cells generated using a scalable 3D hydrogel promote recovery in a Huntington disease mouse model
    Adil MM, Gaj T, Rao AT, Kulkarni RU, Fuentes CM, Ramadoss GN Ekman FK, Miller EW and Schaffer DV
    Stem Cell Reports 10, 1481–91 (2018)
  16. A hypothalamic switch for REM and non-REM sleep.
    Chen KS, Xu M, Zhang Z, Chang WC, Gaj T, Schaffer DV and Dan Y
    Neuron 97, 1168-76 (2018)
  17. In vivo genome editing improves motor function and extends survival in a mouse model of ALS.
    Gaj T, Ojala DS, Ekman FK, Byrne LC, Limsirichai P and Schaffer DV
    Science Advances 3, eaar3952 (2017)

    • Featured by the New England Journal of Medicine [Link]
    • Highlighted by The Scientist [Link]
    • Featured by Gizmodo [Link] and Digital Trends [Link]
    • Highlighted by Alzforum [Link] and ALS News Today [Link]
  18. Scalable and defined differentiation of human oligodendrocyte precursor cells from pluripotent stem cells in a 3D culture system.
    Rodrigues GMC, Gaj T, Adil MM, Wahba J, Rao AT, Lorbeer F, Kulkarni R, Miller EW, Hockemeyer D, Diogo MM, Cabral JMS and Schaffer DV
    Stem Cell Reports 8, 1770-83 (2017)

    • Selected as an Editor’s Choice in Science Translational Medicine [Link]
  19. Targeted gene knock-in by homology-directed genome editing using Cas9 ribonucleoprotein and AAV donor delivery.
    Gaj T*, Staahl BT*, Rodrigues GMC, Limsirichai P, Ekman FK, Doudna JA and Schaffer DV (*equal contribution)
    Nucleic Acids Research 45, e98 (2017)
  20. Genome-editing technologies: principles and applications.
    Gaj T, Sirk SJ, Shui S and Liu J.
    Cold Spring Harbor Perspectives in Biology 12, a023754 (2016)
  21. A designer AAV variant permits efficient retrograde access to projection neurons.
    Tervo DGR, Huang BY, Viswanathan S, Gaj T, Lavzin M, Ritola KD, Lindo S, Michael S, Kuleshova E, Ojala DS, Gerfen CR, Schiller J, Dudman JT, Hantman AW, Looger LL, Schaffer DV and Karpova AY
    Neuron 92, 372-82 (2016)

    • Recommended by Faculty of 1000 [Link]
  22. Adeno-associated virus-mediated delivery of CRISPR-Cas systems for genome engineering in mammalian cells.
    Gaj T and Schaffer DV
    Cold Spring Harbor Protocols 11, pdb.prot086868 (2016)

    • Featured on the Journal Cover [Link]
  23. Reactivation of latent HIV-1 expression by engineered TALE transcription factors.
    Perdigão P, Gaj T, Santa-Marta M, Barbas CF and Gonçalves J
    PLOS ONE 11, e0150037 (2016)
  24. CRISPR-mediated activation of latent HIV-1 expression.
    Limsirichai P*, Gaj T*, and Schaffer DV (*equal contribution)
    Molecular Therapy 24, 499-507 (2016)

    • Featured by Molecular Therapy [Link]
    • Highlighted by Nature Medicine [Link]
    • Recommended by Faculty of 1000 [Link]
  25. Genome engineering using adeno-associated virus: basic and clinical research applications.
    Gaj T, Epstein BE and Schaffer DV
    Molecular Therapy 24, 458-64 (2016)
  26. Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells.
    Liu J*, Gaj T*, Yang Y, Wang N, Shui S, Kim S, Kanchiswamy CN, Kim JS and Barbas CF (*equal contribution)
    Nature Protocols 10, 1842-59 (2015)
  27. Redesigning recombinase specificity for safe harbor sites in the human genome.
    Wallen MA, Gaj T and Barbas CF
    PLOS ONE 10, e0139123 (2015)
  28. Direct protein delivery to mammalian cells using cell-permeable Cys2-His2 zinc-finger domains.
    Gaj T and Liu J
    Journal of Visualized Experiments 97, e52814 (2015)
  29. Improved cell-penetrating zinc-finger nuclease proteins for precision genome engineering.
    Liu J*, Gaj T*, Wallen MA and Barbas CF (*equal contribution)
    Molecular Therapy – Nucleic Acids 4, e232 (2015)
  30. Genome engineering with custom recombinases.
    Gaj T and Barbas CF
    Methods in Enzymology 546, 79-91 (2014)
  31. Site-specific labeling of a lysine residue in human serum albumin.
    Asano S, Patterson JT, Gaj T and Barbas CF
    Angewandte Chemie International Edition 53, 11783-6 (2014)
  32. Protein delivery using Cys2-His2 zinc-finger domains.
    Gaj T, Liu J, Anderson KE, Sirk SJ, and Barbas CF
    ACS Chemical Biology 9, 1662-7 (2014)

    • Selected as an ACS Editor’s Choice
    • Highlighted by ACS Chemical Biology [Link]
    • Recommended by Faculty of 1000 [Link]
  33. Synthetic zinc-finger proteins: the advent of targeted gene regulation and genome modification technologies.
    Gersbach CA*, Gaj T* and Barbas CF (*equal contribution)
    Accounts in Chemical Research 47, 2309-18 (2014)

    • Featured on the Journal Cover [Link]
  34. Enhancing the specificity of recombinase-mediated genome engineering through dimer interface redesign.
    Gaj T, Sirk SJ, Tingle R, Mercer AC, Wallen MA and Barbas CF
    Journal of the American Chemical Society 136, 5047-56 (2014)

    • Highlighted by Chemistry & Biology [Link]
    • Highlighted by SciBX: Science-Business eXchange [Link]
  35. Cell-penetrating peptide-mediated delivery of TALEN proteins via bioconjugation for genome engineering.
    Liu J, Gaj T, Patterson JT, Sirk SJ and Barbas CF
    PLOS ONE 9, e85755 (2014)
  36. Expanding the zinc-finger recombinase repertoire: directed evolution and mutational analysis of serine recombinase specificity determinants.
    Sirk SJ, Gaj T, Jonsson A, Mercer AC and Barbas CF
    Nucleic Acids Research 42, 4755-66 (2014)
  37. Regulation of endogenous human gene expression by ligand-inducible TALE transcription factors.
    Mercer AC*, Gaj T*, Sirk SJ, Lamb BM and Barbas CF (*equal contribution)
    ACS Synthetic Biology 3, 723-30 (2014)
  38. Expanding the scope of site-specific recombinases for genetic and metabolic engineering.
    Gaj T, Sirk SJ and Barbas CF
    Biotechnology & Bioengineering 111, 1-15 (2014)
  39. ZFN, TALEN and CRISPR/Cas-based methods for genome engineering.
    Gaj T, Gersbach CA and Barbas CF
    Trends in Biotechnology 7, 397-405 (2013)

    • Featured on Journal Cover [Link]
    • Selected by the Trends in Biotechnology Editorial Board as one of the Top 10 articles of 2013
  40. A comprehensive approach to zinc-finger recombinase customization enables genomic targeting in human cells.
    Gaj T, Mercer AC, Sirk SJ, Smith HL and Barbas CF
    Nucleic Acids Research 41, 3937-46 (2013)
  41. Chimeric TALE recombinases with programmable DNA sequence specificity.
    Mercer AC, Gaj T, Fuller RP and Barbas CF
    Nucleic Acids Research 40, 11163-72 (2012)
  42. Targeted gene knockout by direct delivery of zinc-finger nuclease proteins.
    Gaj T, Guo J, Kato Y, Sirk SJ and Barbas CF
    Nature Methods 9, 805-7 (2012)

    • Highlighted by Chemical & Engineering News [Link]
    • Featured by Genetic Engineering & Biotechnology News [Link]
    • Highlighted by Molecular Therapy [Link]
  43. Targeted plasmid integration into the human genome by an engineered zinc-finger recombinase.
    Gersbach CA, Gaj T, Gordley RM, Mercer AC and Barbas CF
    Nucleic Acids Research 39, 7868-78 (2011)
  44. Structure-guided reprogramming of serine recombinase DNA sequence specificity.
    Gaj T, Mercer AC, Gersbach CA, Gordley RM and Barbas CF
    Proceedings of the National Academy of Sciences 108, 498-503 (2011)

    • Highlighted by Nature Biotechnology [Link]
  45. Directed evolution of an enhanced and highly efficient FokI cleavage domain for zinc-finger nucleases.
    Guo J, Gaj T and Barbas CF
    Journal of Molecular Biology 400, 96-107 (2010)

    • Recommended by Faculty of 1000 [Link]
  46. Directed evolution of recombinase specificity by split gene reassembly.
    Gersbach CA, Gaj T, Gordley RM and Barbas CF
    Nucleic Acids Research 38, 4198-206, (2010)

    • Featured on the Journal Cover and selected as a Feature Article
  47. Tethering small molecules to a phage display library: discovery of a selective bivalent inhibitor of protein kinase A.
    Meyer SC, Shoman CD, Gaj T and Ghosh I.
    Journal of the American Chemical Society 129, 13812-3 (2007)

    • Highlighted by ACS Chemical Biology [Link]
    • Featured by Molecular Biosystems [Link]
    • Recommended by Faculty of 1000 [Link]
  48. The AviD-tag, a NeutrAvidin/avidin specific peptide affinity tag for the immobilization and purification of recombinant proteins.
    Gaj T, Meyer SC and Ghosh I.
    Protein Expression and Purification 56, 54-61 (2007)
  49. Highly selective cyclic peptide ligands for NeutrAvidin and avidin identified by phage display.
    Meyer SC, Gaj T and Ghosh I.
    Chemical Biology & Drug Design 68, 3-10 (2006)